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Linear water-wave theory is used in conjunction with a wide-spacing approximation 
to develop closed-form expressions for the reflection and transmission coefficients 
appropriate to a plane wave incident upon any number of identical equally spaced 
obstacles in two dimensions, and also to derive a real expression from which the 
sloshing frequencies, which occur when the bodies are bounded by rigid walls, can be 
determined. In  each case the solution is in terms of known properties of radiation 
problems associated with any one of the bodies in isolation. 

1. Introduction 
The wide-spacing approximation has proved to be a powerful and surprisingly 

accurate tool for solving two-dimensional radiation and scattering problems in linear 
water-wave theory involving more than one body. The method is based on the 
assumption that the bodies are sufficiently widely spaced that the local field in tho 
vicinity of one body does not influence the others. Thus the wave field at any point 
is assumed to have arisen from reflection or transmission of waves by adjacent bodies 
treated in isolation. 

The method was first used by Ohkusu (1970) in considering the catamaran problem 
of two half-immersed circular cylinders. He achieved good agreement with an exact 
treatment even when the spacing between the cylinders was not large compared with 
the wavelength. The same conclusion was arrived at by Srokosz & Evans (1979) who 
provided a full wide-spacing theory for both scattering and radiation problems 
involving two bodies. They found, by comparison with more accurate results of 
Evans & Morris (1972), that the method gave good agreement for the reflection of an 
incident wave by two partially immersed vertical barriers even when the assumption 
of wide spacing was not valid. 

Martin (1985), using the null-field method, shows how the wide-spacing 
approximation can be recovered when the exact equations are solved in an 
appropriate asymptotic limit. He concluded that the approximation required both 
that the wavelength to spacing ratio be small and also that the size of each body be 
small compared with the spacing. 

In a novel application of the approximation Evans & McIver (1987, hereinafter 
denoted by I) derived a general equation from which the resonant or sloshing 
frequencies of oscillation of water in a rectangular tank containing an arbitrary 
obstacle could be determined. The results were compared with a full linearized theory 
for the case of a thin vertical baffle either piercing the surface or bottom mounted and 
totally submerged. For the higher modes the agreement was excellent and even for 
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the lowest mode where the approximate theory might be expected to be poor the 
agreement was within a few percent of the result using the full theory in most cases. 

Having established an approximate but accurate tool for predicting sloshing 
frequencies it is of interest to seek ways of extending the technique to more than one 
obstacle. Unfortunately, successive application of the wide-spacing approximation 
rapidly produces unwieldy expressions. Thus the expression given by equation (3.8) 
in I for the resonant frequencies of water in a tank with three identical equally spaced 
baffles was only arrived a t  after lengthy algebra. 

Another drawback, not recognized at  the time, is that the general equation (3.6) 
derived in I for the sloshing frequencies in the case of a single body depends upon 
complex quantities such as the reflection and transmission coefficients for that body 
in an unbounded region, yet the equation, on physical grounds, must have only real 
soh  tions . 

Both these shortcomings are overcome in the present paper. First' it is shown how, 
by considering two separate radiation problems for the forced motion of a given 
body, a real equation can be obtained for the sloshing frequencies for water in a 
rectangular tank containing an arbitrarily shaped obstacle. For the special case of an 
obstacle with symmetry about the vertical i t  is shown how the new result can be 
manipulated into the form given in I. 

Secondly, prompted by ideas of Heading (1982) who considered the related 
problem of wave propagation through n identical slabs, a closed-form expression is 
derived for the sloshing frequencies for n identical obstacles in a tank, and for the 
reflection and transmission coefficients for incident wave transmission past n 
identical obstacles, in each case in terms of properties of the radiation problem for 
the forced motion of any one of them. The method, which appears to be more direct 
than the approach of Heading utilizes a closed-form expression for the nth power of 
a 2 x 2 complex matrix of fairly general form. 

It is shown that the reflection and transmission coefficients satisfy the conservation 
of energy flux condition, and the condition under which an incident wave is totally 
transmitted past all n bodies is derived. This condition turns out to be one of the 
conditions required for the determination of the resonant frequencies when n bodies 
are present in the tank, the other condition being the expression for the resonant 
frequencies for a single obstacle, since by symmetry this will still be satisfied in the 
more general case. 

The power of the technique is illustrated by considering various special cases and 
by confirming directly the result quoted in I for the resonant frequencies in the case 
of three thin baffles in a tank. 

2. Formulation and solution 
We consider two-dimensional motions in the (2, y)-plane. The horizontal bottom is 

y = 0 and the undisturbed free surface y = h. Linearized water-wave theory is 
assumed so that we can introduce a velocity potential 

@(z, y, t )  = Re $(x, y) e-iwt, 

where w is the radian frequency. The time-independent complex potential $(x, y) 
satisfies Laplace's equation and 

K$ = a$/ay, K = W z / g ,  y = h, (2.1) 

a$/ay = 0, y = 0, (2.2) 
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a$/an = 0 on any obstacles in the fluid, where n is in the direction of the normal to 
each body. 

We assume that the n identical bodies are equally spaced in the interval 0 < x < 
na. The mth body (1  < m < n) is contained within the mth interval ( (m- l ) a , m a )  
and contains the point x = (m- l ) a + c  = ma-b so that b + c  = a. 

It is assumed that at the left-hand boundary of this interval the velocity potential 
can be written 

(2.3) 

) cosh ky, (2.4) 

eik(z-(m-l)a) + B e-iW-(m-l) a ) )  ky, $(x,Y) N (Am-1 m-1 

and at  the right-hand boundary 

$(x, y) ( A ,  eiWz-ma) + R  e-ik(z-ma) 
m 

so that the obstacles are sufficiently widely spaced for any local effects to be 
neglected. Here k is the positive real root of the equation 

(2.5) w 2 / g  = K = k tanh kh 

so that (2.3) and (2.4) are harmonic and satisfy (2.1) and (2.2). 
We shall be primarily concerned with two situations. In the first a wave is incident 

upon the bodies from either the left of x = 0 or the right of x = na and we seek the 
overall reflection and transmission coefficients. In the second we assume the lines 
x = 0, x = na describe the rigid walls of a rectangular tank and we seek the resonant 
frequencies w of free oscillations in the tank in the presence of the obstacles. In either 
case we shall be prescribing some of the coefficients A,, B,, A,, B,. In the first case 
for waves incident upon x = 0 we assume 

$ - (eikx +lit) e-ikx) cosh ky, x --f - 00 (2.6) 

- TX) eikx cosh ky, x+ + 00, (2.7) 

so that by comparison with (2.3) and (2.4), A,  = 1, B, = Bg), A,e-ikna = Tp , 

(2-8) 

- Tf) e-ikx cosh ky, x --f - a, (2.9) 

B, = 0, whilst for waves incident upon x = an we assume 

q5 N (ePikz +Rf)eikz) cosh ky, x -+ + 00 

n 1, A ,  = 0, B, = Tk2). (2.10) so that A e-ikna - - R f ) ,  3, eikna = 

In the second case in order to satisfy the zero normal velocity condition on the 
tank walls we require 

A,  = B,, A ,  = B,. (2.11) 

The aim is to relate the coefficients A,, B, to A,-l, Bm-l and hence by successive 
application of this relation, connect A,, 3, with A,, B,. There are a number of ways 
in which this can be done. 

First we set up a new coordinate X in the mth body, where X = x- (m- 1) a-c = 
x-ma+b so that 

, x = - c  (2.12) eikc eikX +B,-, e-ikc e-ikX $ -A,-1 
N A ,  e-ikb ei”X + B,  eikb e-lkx, X = b,  (2.13) 

where here and in what follows we have dropped the cosh ky term for convenience. 
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Xow for each of the bodies in isolation there will be a reflection and transmission 
coefficient. In  particular for the mth body, we assume 

and 

$,(X, 0) - eikX +r,e-’”, X - 2  -m - tleikx, X - t  +a, 

@,(X, 0) - ePikx +r,eikX, X - t  +GO - t,ePikXx, X - t  -00, 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

where, consistent with our wide-spacing assumption we shall assume that ( 2 . 4 ,  
(2.16) and (2.14), (2.17) hold at X = b ,  - c  respect~ively. By considering (2.12) and 
(2.13) we see that the second term in (2.12) arises from a reflection by the obstacle 
of the waves described by the first term and a transmission past the obstacle of the 
waves described by the second term in (2.13). Similarly the first term in (2.13) arises 
from a reflection by the obstacle of the waves described by the second term and a 
transmission of the waves described by the first term in (2.12). Thus 

BmWl e-ikc = Am-l eikc r1 + B, eikb t , ,  (2.18) 

A m e-ikb = Bmeikbr2+A,-1 eikct,, (2.19) 

which may be written 

whence 

(2.20) 

(2.21) 

where d = b - c ,  a = b+c. 
This is the usual way in which the wide-spacing approximation is applied. If we 

now consider the resonant frequency problem for a single body so that (2.11) holds 
with n( = m) = 1 ,  then we see from (2.20) that we require 

(2.22) 

which agrees with equation (3.6) of 1 since it is well known (and will be shown later) 
that t, = t,. 

t, t, eika = (e-ikc - rl eikc) ( e -ikb - r2  eikb) 

The second approach, adopted by Heading (1982), is to assume 

and choose possible realizations. For example 

describes waves incident from the left, whence 

(,,,,) = *( e-”) 
rleikc ’ 

(2.23) 
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describes waves incident from the right, whence 

,,. eikb 

( : - i k b )  = ‘ ( t ,  :ikc)* 

Putting these together, we get 

whence 

t ,  eikb ,,., eikb ( 0 e-ikb) = 

eika(tl - rl rz/ t2)  eikd r2/ t2  
- e+lcd r J t ,  e-ika/tz 

(2.24) 

in agreement with (2.21). 

satisfying all the conditions of the problem in the mth interval and let 
Yet another approach is as follows. Let $i (i = 1,2) be harmonic potentials 

$$ N C, eikX +D, e-’”, X = - c 

- Eieikx +F,e-’”, X = + 6 .  

Then it is well known that, by applying the identity 

(2.25) 

valid for sufficiently smooth harmonic functions, around a contour consisting of the 
boundary of the mth interval including the free surface, the bottom and the mth 
body, then 

C,D,-C,D,  = E,F2-E2Fl (2.26) 

since the only contributions to the integral come from the forms (2.25) at X = -c,  
b. When applied to $, and $, = $,, (2.26) reduces to the condition of energy flux 
conservation. If we choose $, = q5,, ?,h2 = q52 and use (2.14)-(2.17) we obtain t,  = t, 
from (2.26). If we choose t,bl = #, as given by (2.12), (2.13) and choose t,b2 to be first 

and then and apply (2.26) we obtain the equations (2.18), (2.19) with t ,  and t, 
interchanged. 

An entirely different result is obtained however by proceeding as follows. For any 
of the bodies in isolation we can define radiation potentials x i ( X ,  y) ( i  = 1,2) resulting 
from a given real normal velocity imposed on the body such as that arising from a 
rigid body motion of that body. Thus for our mth body in isolation we would have 

0) N A; ekikX, X+ & 00,  

where Af are assumed known complex potential amplitudes. Consider now 

Qi = & - X i  

where a bar denotes complex conjugate. By construction Qi has zero normal velocity 
on the body. Then 

@,(X,O) -A:eikX-iilee-ikX, X - t  +a (2.27) 

-A~e-ikx-A--eik’X, 6 X+, -a, (2.28) 

This device was used by Newman (1975) to obtain new relations between radiation 
and scattering problems -the Newman relations. He chose $l = Qi and $, = q51 or 
$, and applied (2.26) to the asymptotic forms (2.27), (2.28), and (2.14), (2.15) or 
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(2.16), (2.17). Here we choose @, = # and $2 = Qi, i = 1 ,2  and, consistent with our 
previous assumptions, we assume that (2.27), (2.28) hold a t  b,  - c  respectively. 

It follows from (2.26) that 

ATe-ikb ATeikb)(AB) = (-A;eikc -A--e-ikC 
-A; eikc -A-; 1 e-ikC 

(2.29) (A; c-ikb A; eikb 

If we now apply the resonant conditions (2.11) for a single body we obtain 

IAJ Id;] cos (kc + 0;) cos ( k b  + 19;) = IA,I cos (kb  + 0:) cos ( k ~ ,  + 6;), (2.30) 

where A; = lAfl exp(i8;). 
Equation (2.30) is new and, in contrast to (2.22), is a real equation for the real roots 

k which determine the resonant frequencies from (2.5). Presumably the equivalence 
of (2.22) and (2.30) may be shown by making use of the Newman relations. 

In the special but still interesting case of a body with horizontal symmetry about 
the line X = 0, we have 

1.1:1 = IAJ = &I, 8: = 8; +,, 
IAlI = IAJ IA,l, 6; = 0 2 + ~  3 0, 

and (2.29) reduces to 

ei(kc+8s) - e-iac+f%)) rm-l) = ( e-i(kb+9,) &kb+O,) 

ei(kc+8a) e-i(kc+8,) e-i(lcb+8a) ei(kb+9a) (- Bm-1 

Direct inversion of the matrix on the right-hand side of (2.31) now gives, using (2.23), 

.=-( i - eiA -eiDcosD 
sin B eeiD cos B e-iA (2.32) 

where A = ka+O,+6,, D = k ( b - c ) ,  B = 0,-6,. (2.33) 

Now for symmetric bodies the Newman relations reduce to 

(2.34) + t = - e2i% r - t = 

where 

and substitution of (2.34) into this special case of (2.24) gives (2.32), as expected, 
after a little algebra. The resonant condition (2.30) for a symmetric body reduces to  

cos ( kc + 8,) cos (kb + 6,) + cos (kc + 0,) cos (kb + 0,) = 0 (2.35) 

and with rather more effort it is also possible to prove that this condition is identical 
to (2.22) in the symmetric case, namely 

t 2  = (r-e-2ikb)(r-e-2ikc 1. (2.36) 

T, = r2 = r ,  t ,  = t2 G t ,  

Thus we have from (2.35) 

0 = 4 {COS (kb + 6,) cos (kc + 6,) + cos (kc + 6,) cos (kh + 6,)) 

- - ei(kb-8s) (e-2ikb + e2i8,) ei(kc-8,) (e-2ikc + e2i8,) 

+ ei(kc-8s) (e-2ikc + e2L6rs) eiCkb-Oa) ( - 2ikb +e2gea) 

- - eik(b+c) e-i(8,+f3a) { ( p -  r - t )  ( 6 - r  + t )  + (6- r -  t )  (p- r +  t)}, 
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where p = e-2ikb 8 = e-2ikc and the relations (2.34) have been used. This last 
expression in cu& brackets now reduces to 2{ ( r  -,IS) ( r  - 6) - t2 )  in agreement with 
(2.36). 

For the special case of a symmetric obstacle in the middle of a rectangular tank, 
b = c, (2.36) reduces to 

,,.+t = e-2ikb - 
0 e-2ikb + .Zie, = e-2ikb + e2iS, = or 

from (2.34), whence 

e-i(kb-es) cos (kb  + 0,) = d k b - @ a )  cos ( k b  + 0,) = 0 

in agreement with (2.35) when b = c.  
In this case we have the simple result 

kb = -e,+~3G(2n-l), 

= -e,++r(Srn- I ) ,  m, n integers, 

although it should be remembered that BS, 8, depend on Ic also, as well as on the 
dimensions of the obstacle. From now on we shall continue to  assume our bodies are 
symmetrical so that T is given by (2.32). 

In order to estimate the effect of all the bodies we need to apply (2.31) repeatedly 
for m = 1 , 2 , .  . . , n. We find that 

(2.37) 

and the problem is solved if we can find a useful form for F .  This is achieved using 
the following result for a wide class of 2 x 2 matrices. 

Let T=("  ") d e t T = 1 ,  a d + 1  
c d '  

and let cosha =+(a+& bhcosh,IS = +(a-d) ,  h2 = -c/b.  (2.38) 

Then sinhp= T". 
sinh (B+na) A-'sinhna 

sinh (/3 - na) - A sinh na 
T, = (2.39) 

The proof follows by induction. We have 

a = cosh a+hb coshp, d = cosh a- Ab coshp. (2.40) 

So ad = cosh'a-h2b2 cosh2P = 1 -h2b2 since det T = 1 and hence 

Ab = sinhu/sinhB (2.41) 

and the positive square root has been chosen. 
It is now straightforward, using (2.41) to confirm that 
Suppose T, = Tn for all integers up to n. Direct multiplication gives, as the top left 

= T. 

element of Tnfl = Tn * T, the expression 

{sinh (P+na) sinh (/3+a)-sinhnasinha)/sinh2/3, 

which, if the induction argument is to work, should equal the corresponding element 
of Tn+, namely, sinh (/3+ (n+ 1) a)/sinh,IS. This follows if 

sinh(/3+na)sinh(/3+a)-sinh(/3+(n+l)a)sinhp = sinhnasinha, 
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which is easily verified by expanding the left-hand side in terms of coshna and 
sinhna. The other elements of Tnil can be shown to agree with the corresponding 
elements of T,+l, and since we have verified the case n = 1 ,  i t  follows that T, given 
by (2.39) is indeed T” for all positive integers n. Notice that from (2.38) we can 
replace a or p by -a or -p  in (2.39) to get a different form for T, also equal to Tn. 
This corresponds to  choosing the other square root in the form for b in (2.41). 

If ad = 1 then, since det T =  1, one or both of b , c  is zero. If both are zero T is 
diagonal and 1’’ is straightforward. 

Suppose c = 0, b + 0, then it is easily proved by induction that 

(‘er 

b sinh ncclsinh a 
Tn 3 e-na ) =  Tn 

where a = ea, d = e-“. 

that AhcoshP-tsinha, in (2.39), (2.40). 

its nth power is given by (2.39), where from (2.32) 

This result also follows from the case ad + 1 by taking the limits p-. 00, h + 0 such 

Now the matrix (2.32) has det T = 1 and ad $I 1 as required and so it follows that 

(2.42) 

Also, from (2.42) (2.43) 

Since A, B are real then lsin A/sin BI >< 1 according as Icosd/cos BI 5 1 so that a 
and p cannot both be real together. We distinguish between the various cases. 

Suppose (sinA/sinBI < 1 .  Then we write a = ia’ and c o s d  = sinA/sinB and, 
if cos Alcos B > 1,  cosh /? = cos A/cos B, whereas if cos Alcos B < - 1,  cosh p’ = 
- cos Alcos B,  where ,6 = /3’ + in. 

If sinAlsinR > 1 ,  then a > 0 and cosp’ = cosA/cosB, where p = ip’. Finally if 
sin A/sinR < - 1,  cosh 01’ = -sin A/sin B and cosp’ = cos A/cos B, where a = a’+ in, 

= i/3’. 

cosh a = sin A/sin B, cosh /3 = cos A/cos B, h = ePiL). 

sinh p = i tan B sinh a. 

3. Applications 

write 
We consider first thc: reflection and transmission past 7b symmetric obstacles. We 

and note from (2.7), (2.10) and (2.31) that  

flp eikna = a, + b,Rg’, 

O = c,+d,Rc), J 
~ p ~ i k n a  = b T(2) whilst n n 7 1  

e-ikna = d T(2). 
f i n 1  

It follows from (2.39) and (3.1), (3.2) that 

Tc)  = F:) = 7; = e-iknasinh,O/sinh (p-na) 

Rg) = hsinhnalsinh (p-na), since det T” = 1, 

(3.3) 

(3.4) 

R(2) = c-2ikna sinhna 
h sinh (p - na) * (3.5) 
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Now (sinhna)(sinhnE)+sinhpsinhp 
R!) R:) i- T, T, = (i = 1,2), (3.6) sinh (b-na) sinh (P-n&) 

and it can be shown by considering each of the separate cases in turn that the right- 
hand side of (3.6) is unity confirming that conservation of energy flux is satisfied. As 
illustration we shall suppose in all that follows that JsinA/sinB( < 1, cosA/cosB > 1 
so that a = ia’. Similar considerations apply to the other cases. 

Then the numerator and denominator each reduce to 

sinh2p+sin2na’, and IT,I = lsinhj31/(sinh2j3+sin2na’)i, (3.7) 

whilst IRS’I = lsinna’l/(sinh2B+sin2na’)i. (3.8) 

As a check on the correctness of these results we put n = 1 in (3.7), (3.8) and obtain 
for a single obstacle, after simple reductions, 

IR?)[ = lsina’l/(cosh2j3-cos2a’)i = lcosB(, = Isin231 

where (2.40) with a = ia has been used. 
We note that these expressions are independent of a as expected. But from (2.34) 

r = - l(e2% + e2ioa) = - ei(%+oa) cos (0, - Oa), 

t =- - $(e2i% - ) = - ei(%+%) i sin ( 8, - 8,) , 
2 

whilst 

whence wr)l = Irl = JcosBJ, IT,I = It1 = IsinB( as expected. 
Notice that lBt)l, 1T,I depend only on a’, p or A ,  B and not on h or D showing that 

the reflected and transmitted amplitudes depend only upon the spacing a( = b + c) 
and not on b,  c separately. This is not the case however for the phases of Rg), T,. 

It follows from (3.7) that under the wide-spacing approximation IT,I never 
vanishes unless IT,I vanishes for a single obstacle. The author is not aware of any 
cases when this occurs. This is in contrast to what is known to occur when the full 
linearized water-wave equations are used without approximation. Thus Evans & 
Morris (1972) analytically, and McIver (1985) numerically, have shown that T,  
vanishes at  certain discrete wave frequencies in the case of two thin vertical surface 
barriers in infinite and finite depth respectively. 

In contrast it can be seen from (3.8) that lR91 = 0 when a‘ = mn/n,m an integer 
provided p =I= 0 or, from (2.42), whenever 

cos mn/n = sin A/sin B, m integer, /3 =k 0. (3.9) 

We consider first the case of a single obstacle. Since sinhp = -sin a’ tanB, both a’ 
and p vanish simultaneously and the appropriate condition for lBii)l to vanish is 
(cosB( = 0. In general this will only occur at discrete wave frequencies but it is 
noteworthy that for a submerged circular cylinder in deep water wit’J = 0 for all wave 
frequencies and size and depth of submergence of the cylinder (Ursell 1950). It turns 
out that (0,-0,( = in in this case (Ogilvie 1963) so that COSB vanishes idcntically. 

In the general case n > 1 we must exclude therefore values of a’ satisfying 
sin na’ = 0 which also satisfy sin a’ = 0 since these belong to the n = 1 case which has 
already been considered. Thus there are in general n- 1 equations to be satisfied for 
)@I to vanish, obtained by choosing m = 1,2, .  . . , n- 1 in (3.9). 

It is not difficult to show that for any set of n symmetric obstacles, there exist n- 1 
infinities of solutions to (3.9) on physical grounds. For example suppose the obstacles 
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do not pierce the surface. Then it is reasonable to assume that as ka-t 00, r +O, 
t - t  1 since very short waves will be unaffected. Thus 

( ~ + t ) / ( r - t )  = e2i(ss-8a)-t - 1,  ka+ co 

showing that (sin BI --f 1, La -+ 00, and 

( ~ 2  - t2 )  = e21(%+%) +. - 1, ka --f a 

showing that lsin A1 --f lcos kal, ka + co. 
It is now clear that (3.9) has an infinity of solutions for La for each m. Similar 

arguments can be used for surface-piercing obstacles. In the simplest case of two 
submerged obstacles it follows, by putting n = 2 , m  = 1 that IRC’I = 0 for ka - 
$n(2s - 1) (s integer) for large ka. In general each additional obstacle increases the set 
of solutions by one, and also changes the original set, unless members of the set 
{cos ma/(n + 1 ), m = 1, . . . , n) are contained in {cos mx/n, m = 1,2 ,  . . , , n - l} in which 
case the corresponding solution set recurs. 

We turn next to the sloshing problem for n identical bodies. Putting A ,  = B,, 
A ,  = B, as required by (2.11) gives 

an+bn = c ,+dn ,  

whence from (2.39) 

or 

sinh nu 
sinh /3 (cosh/3+cosD) = 0 

sin na’ 
sinh /3 

(cosA +cosBcosD)/cosB = 0, 

(3.10) 

(3.11) 

where we continue to assume IsinAlsinBI < 1 so that COSU‘ = sinA/sinB. 
It follows that the resonant frequencies are given by solutions of the equations 

sinna’ = 0 (/3 =# 0) (3.12) 

and COSA+COSBCOSD = 0 (cosB =i= 0). (3.13) 

Equation (3.12) is precisely the requirement that IR$)I vanish, a result noted by 
Heading (1982) in a similar context, whilst (3.13), being independent of n, must be 
identical to (2.35) for the resonant frequencies in any one of the intervals containing 
a single obstacle since these are clearly solutions also in the general n-obstacle case. 
The equivalence of (2.35) and (3.13) follows by noting that 

cos A E cos (kb  + 8,) cos (kc + 8,) -sin (kb + 6,) sin (kc + 6,) 

and 
COSBCOSD cos (8, -6&) cos k ( 6 - C )  = 60s (kb +8,) cos (k + 6,) 

+ sin (Icb + 8,) sin (kc + 8,), 

this latter result following from the identity 

cos ( A  + B) cos (C + D )  + sin (A +D) sin (B + C )  = cos (B -D) cos (A - C) 

true for all A ,  B, C, D. Notice that the solutions of (3.12) do not depend upon 6 ,  c but 
only upon b + c  = a. Thus these resonant frequencies depend only on the spacing of 
the bodies and not their positions relative to the tank walls. 

In order to test our results in this case we shall check against results provided by 
P. McIver (private communication) for two and three obstacles in the form of thin 
baffles. 
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It is known that for thin vertical obstacles r+t = 1 and BS = $r so that sinA/sinB 

coska-psinka= cosmnc/n ( m =  1,2, ..., n-1) (3.14) 

= cos (ka+ O,)/cosO, and condition (3.9) becomes 

where 

whilst (2.35) becomes 

p = tan0, = ir / t ,  

cos (kc + 19,) sin kb + cos (kb + 8,) sin kc = 0, 

or sin ku = 2p sin kb sin kc, (3.15) 

in agreement with equation (3.7) of I .  
Now for two baffles a distance ;a from the ends of a tank of length 2a, McIver 

derives the conditions 
2ir 

l - r  
cos ka  - -sin $a cos ika = 0 

sin ka  - - sin2$ka = 0. 
2ir 

l - r  
and 

The latter agrees with (3.15) when b = c = $, whilst the former reduces to 

cos ka  - p sin ka = 0 

in agreement with (3.14) with n = 2, m = 1 .  
A more convincing check is against the results for three identical equally spaced 

thin baffles a distance a apart, the outer two being a distance u from the tank walls. 
The results quoted in I (equation (3.8)) for the determination of the resonant 
frequencies is 

tanka = { 2 p + ( 2 p 2 + 1 ) ~ } / ( 2 ~ ~ - 1 ) ,  

which arises from the solution of 

(1 - p 2 )  cos2ka -2p sin 2ka+p2 = 0 (3.16) 

obtained after lengthy algebra following successive applications of the wide-spacing 
approximation (P. McIver, private communication). But (3.16) can be written 

(1  + cos 2ka) + p 2 (  1 - cos 2ka) -2p sin 2ka- 1 = 0 

cos2 ka + p 2  sin2 ka - 2p sin ka COB ka = 4 

(coska-psinka) = f-. 
d 2  

or 

or 

Also deduced by McIver is the result 

(3.17) 
1 

sin2ka 2ir 
sin2ka l - r  - 2P, -- (3.18) 

which can be interpreted as the solution that is symmetric about the middle baffle 
and can be deduced from (3.15) by putting a = 2a, b = c = a. 

The general formula gives all these results directly. To achieve the same spacing 
a between the tank walls and the outer baffles as that between adjacent baffles we 
choose n = 4 and b = 0 (or a), c = a (or 0 )  so that one of the (four) baffles coincides 
with one wall. Although this would appear to violate the wide-spacing approxi- 
mation, it is justified since (3.12) holds for any value of b , c ,  with b+c  = a. 
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The required condition is now, from (3.14) 

cos ka - p  sin ka = cos +x (m = 1,2 ,3) .  

Clearly m = 1 , 3  corresponds to (3.17) and rn = 2 to (3.18). 

4. Conclusion 
The widc-spacing approximation has been used to  consider the scattering of waves 

from an arbitrary number of identical bodies and to determine resonant frequencies 
when the same n bodies are bounded by the sides of a rectangular tank. A real-valued 
expression has been derived for the determination of the resonant frequencies when 
there is just a single obstacle and this has been generalized to n symmetric obstacles 
by utilizing a compact expression for the nth power of a 2 x 2 matrix. Expressions 
have also been derived, similar to those derived by Heading (1982), for the reflection 
and transmission coefficients for scattering of an incident wave by n symmetric 
obstacles. 
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